EAM Starting Grants

EAM’s major measurement to support scientific independence of postdoctoral researchers and junior group leaders have been the EAM Starting Grants. A total of 13 grants have been awarded between 2011-2015. In 2020, the funding scheme has been renewed and since then, EAM has granted 4 more EAM Starting Grants.

FORCED SURFACE DYNAMICS FOR NOVEL CATALYTIC CONCEPTS

Prof. Dr. Tanja Franken, 34
Junior Professor for Catalytic and Electrocatalytic Systems and Processes
at the Institute of Chemical Reaction Engineering

Exploiting the dynamic surface behavior of complex mixed metal oxides for future relevant thermo catalytic reactions

Optical change of a modified catalyst before (left) and after surface activation (right). Copyright: Prof. Dr. Tanja Franken

Avoiding the waste of energy, metals and other resources is one of the current central challenges to enable the transition to a sustainable future. In the chemical industry, sintering of catalysts significantly affects the efficiency and selectivity of processes. To overcome this issue completely new concepts need to be explored. The aim of the project is to design and stabilise highly active catalysts based on mixed metal oxides (MMOs), exploiting the dynamic behaviour of oxide surfaces near their stability limit. The activation of MMOs generates finely dispersed metal centres in close vicinity to important functional surface groups, which exhibit a high potential for high activity and selectivity in future relevant reactions for CO2 utilisation or for limiting of CH4 flaring. Examples are CO2 methanation, dry reforming of CH4 or water-gas shift reaction. The project will clarify how MMOs need to be modified in order to trigger surface dynamics and how the process needs to be operated in order to maintain highly active but transiently stable active centres. The fundamental understanding of the adaption of MMOs to generate and maintain high catalytic activity opens up completely new ways for catalyst synthesis and operation. This unconventional perspective on MMO surfaces forces a paradigm shift in the nature and capabilities of oxide based catalysts.

Contact: tanja.franken@fau.de
Webpage: https://www.crt.tf.fau.eu/forschung/arbeitsgruppen/catalytic-and-electrocatalytic-systems-and-processes/

 

DYNAMIC PROCESSES AT ATOMIC RESOLUTION

Dr. Andreas Hutzler, 32
Post-Doctoral Researcher at Electron Devices (LEB)

Modeling Electron-Beam Induced Radiolysis in Liquid-Phase Electron Microscopy – Radiochemistry in LP-EM

HRTEM image series of AuNP growth and subsequent etching in 1 mmol/l HAuCl4 solution recorded at an electron dose rate of 490 e-/Å2s. Copyright: Dr. Andreas Hutzler

The objective of the project is to study the influence of the electron-beam interaction in liquid-phase electron microscopy (LP-EM) on the chemical environment of liquid specimen determining nucleation, growth, interaction and degradation of nanoparticulate systems. In order to study dynamic processes by direct observation on the nanoscale, LP-EM has been shown to be a powerful tool and an enrichment to complementary methods deploying X-ray or light scattering. For example, LP-EM was shown to be suitable for investigating the early stages of particle growth (see figure).
Although LP-EM opens up new possibilities of in situ characterization, the electron beam is known to severely influence or even trigger the observed phenomena and the environment in a liquid cell is often compared to the core of a nuclear reactor. Indeed, scientists try to prevent electron beam induced effects by using conductive membranes like graphene in combination with extremely low dose conditions like used in cryo EM. This, however, strongly limits the capabilities of modern electron microscopes in terms of temporal and spatial resolution. Furthermore, a deep understanding on the interaction of the electron beam with liquid specimen is needed in order to provide reliable predictions of non-biased processes apart from the artificial environment in LP-EM.
Hence, this project aims at verification, enhancement, and completion of existing kinetic models, which is a prerequisite for predicting chemical reactions in specimen solutions containing species beyond water. Accordingly, the results are subsequently utilized for the development of methods for measuring the actual concentrations of key species for enabling a verification of the proposed kinetic model. These studies are strongly needed for LP-EM becoming a standard characterization method in materials science, electrocatalysis and biology.

Contact: andreas.hutzler@fau.de
Webpage: https://www.leb.tf.fau.de/

NMR STUDIES OF CARBON NITRIDE MATERIALS FOR CO2 REDUCTION

Dr. Dorothea Wisser, 33
Post-Doctoral Researcher at Erlangen Center for Interface Research and Catalysis (ECRC)

Porous Carbon Nitride and Boron Carbon Nitrides – Correlation of Structure and Performance by Solid-State NMR

Solid-state NMR at Magic Angle Spinning, carbon nitride material and CO2 reduction. Copyright: Dr. Dorothea Wisser

Carbon nitride and boron carbon nitride materials are promising new candidates for CO2 sequestration and photoreduction into methane, methanol or ethylene. The materials intrinsically contain micropores, and larger pores facilitating mass transport can be introduced during the preparation. In this project, solid-state nuclear magnetic resonance under Magic Angle Spinning (MAS NMR) will be employed to obtain an understanding of the material structures, defects and adsorption sites in molecular detail. The observation of CO2 adsorption and transformation in real time are crucial for understanding the process and for a targeted optimization of the materials, they are however challenging to implement. Therefore, in situ solid-state NMR investigation of the sorption and activation of CO2 in a continuous CO2 flow through the material will be established. For simulation of realistic industrial exhaust streams, conditions of water co-adsorption will be implemented by moist gas flows. Ultimately, light irradiation will be implemented to investigate the photoactivated CO2 reduction online under realistic reaction conditions.

Contact: dorothea.wisser@fau.de
Webpage: https://www.ecrc.fau.de/

 

SYNERGETIC ACTIVATION OF CO2

Moritz Wolf, Ph.D., 32
Head of Team at Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH

Capturing synergetic effects of nitrides as carriers for catalytically active nanoparticles in situ

Schematic conversion of CO2 over nitride-supported nanoparticles (left) and transmission electron micrograph of graphitic carbon nitride (right). Copyright: Moritz Wolf, Ph.D.

The project aims to identify and investigate potentially beneficial synergies when employing nitrides as support materials in heterogeneous catalysts. For example, carbon nitride as a carrier material for catalytically active nanoparticles has a great potential for efficient (co-)activation of CO2 and can therefore strongly influence the catalytic performance. Hence, bifunctional carbon nitride carrier materials may enable multiple conversion pathways for the valorisation of CO2 in addition to the physical support of the active phase. Even though inclusion of the green-house gas CO2 as feedstock in chemical sites is an important step towards a circular economy and sustainable production of basic chemicals, carbon nitride as a carrier material in heterogeneous catalysis has been barely explored. In fact, it is primarily employed as active photocatalyst and in electrocatalysis. Other nitrides have even been shown to have intrinsic catalytic activity and may offer further increased potential for the synergistic conversion of reactants. In the project, transition metal (oxide) based catalysts will be developed using this new class of carrier materials. The catalysts will be tested in several model reactions to identify various modes of synergy between the nitrides and the active phase. The advantageous effect of the nitrides on catalysis, when compared to classical carrier materials, may be evidenced by a boost in activity, selectivity and/or stability. Possible synergies of nitrides, such as the bifunctional activation of reactants, will mainly be investigated by means of in situ and operando characterisation techniques, which are becoming increasingly important in catalyst research. Such techniques enable the monitoring of certain catalyst properties under reaction conditions that are as close as possible to the actual conditions in commercial reactors, e.g. high temperatures and elevated operating pressures. The characterisation under such working conditions requires creative approaches for coupling the analysis of the catalysts with laboratory-scale reactor set-ups. However, this is the only way to study and understand the processes at play under reaction conditions, which is of utmost importance to draw conclusions on effective synergies between support material and catalytically active nanoparticles. The combination of sophisticated in situ techniques and innovative heterogeneous (model) catalysts may elucidate fundamental questions of catalysis addressing the role of the support material.

Contact: mo.wolf@fz-juelich.de
Webpage: www.hi-ern.de/hi-ern/h2Storage/EffHydroRelease
Twitter: www.twitter.com/Wolf_Catalysis

Note: This EAM Starting Grant project will be co-financed by the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN, IEK-11).

Dr. Jakob Albert , 30
Assistent Professor (Akademischer Rat) at the Institute of Chemical Reaction Engineering
Leader of working group „Biomass and Sustainable Production of Platform Chemicals”

Project: Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose with tailor-made polyoxometalate catalysts

The main goal of the project is to design and to optimize tailor-made polyoxometalate catalysts for the stepwise oxidation of lignocellulosic biomass (i.e. wood and residues from sugar or paper industries) to produce formic acid and high-grade cellulose for further processing i.e. in white biotechnology to bio-ethanol. The results of the research project will open new horizons for the sustainable use of biogenic raw materials with regard to chemical compounds.

Biomass combines all materials of organic origin that contain carbon. Lignocellulose as a suitable biogenic substrate, seems to be a promising carbon source for the production of liquid fuels and platform chemicals. Polyoxometalates (POMs) are organo-metallic complexes of light transition metals at their highest oxidation state in combination with oxygen. These metal-oxo anion clusters can also contain multiple hetero atoms. POMs have attracted much attention in recent years due to their fascinating architectures and excellent physico-chemical properties. Moreover, many of the properties of polyoxometalate materials can be finely tuned by changing the constituents and counter cations. These features have made polyoxometalates very attractive in acid and oxidation catalysis. This novel and straightforward process aims to increase the valorization of lignocellulosic biomass in a more sustainable way. This can be achieved by producing liquid hydrogen and syngas equivalent formic acid simultaneously with high-grade cellulose as feedstock for further processing such as fermentation or derivatization. The project aims to optimize suitable POM catalyst materials and improve the related oxidation processes.

Dr. Patric Müller, 34
Assistent Professor (Akademischer Rat) at the Institute for Multiscale Simulation

Project: Particle-based simulation of reactive flows – PARSIFAL

Reactive flows have a wide-ranging technical relevance. Their comprehension and optimization are directly linked to up-to-the-minute topics like pollution control or the manufacturing of new materials. Computer simulations have proven to be an essential tool to promote their investigation. A key ingredient of reactive flow simulation is to resolve the dynamics of the underlying fluids. These are commonly modeled by the Navier-Stokes equations which are then solved by lattice based discretization schemes. This approach has however, practical and theoretical limitations which increasingly manifest in contemporary reactive flow research. These include turbulent flow, multiphase flow, phase transitions and complicated boundaries as well as cases where Navier-Stokes modeling may be questioned at all. The aim of the project is to develop mesh free particle-based simulation methods which have the potential to circumvent several restrictions of standard reactive flow simulation. The developed methods will be tested by three prototypical and for different reasons problematic technically or medically relevant systems, these are: 1) mechanical stimulation of secondary bone healing, 2) growth of patchy coatings on nanoparticles and 3) engine combustion processes and the formation of soot. The particular specialist knowledge required to successfully investigate these highly interdisciplinary demonstrators will be provided by distinct collaborators from the EAM/FAU. Therefore the FAU provides the ideal environment to carry out the proposed project.

Dr. Doris Segets, 33
Managing Director Erlangen Center for Functional Particle Systems
Leader of Working Group “NanoProcessing” at the Institute of Particle Technology (LFG)

Project: Tailored Colloidal Interfaces for an Efficient Processing of Multifunctional Stabilized Hybrid Materials for 3 Dimensional Printing of Optoelectronic Devices: TUNE IT³

The aim of this project is to develop a methodological toolbox for the high throughput (HT) characterization of colloidal interfaces. This is an important step towards the efficient production of multifunctional materials for the 3 dimensional printing of optoelectronic devices. To achieve this highly ambitious goal, the following strategy is implemented. First, a generally applicable approach to resolve thermodynamic and kinetic parameters of ligand binding is developed and transferred to HT experimentation. Then, methods are established to relate molecular characteristics with colloidal stability and dispersibility in different matrices. Finally, the approach will be validated by dispersing nanoparticles in polymers that are applicable to extrusion based 3D printing. ZnO quantum dots (QDs) were selected as technically relevant model system throughout all our investigations. Potential future applications are found in emerging fields like e.g. solar cells. Large impact will be created as the project enhances value chains due to multifunctional material properties and potentially leads to a breakthrough in composite materials where QDs are dispersed on a primary particle level. The project is highly interdisciplinary and connects chemical engineering and particle technology with central aspects of colloid and materials science. It originates from very fundamental questions but eventually bridges the gap to macroscopic product properties.